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Abstract—A long. hanging column is lowered into a fluid. Depending on the immersion length,
densities and flexural rigidity, the column may or may not buckle. The stability criteria are found
in terms of Bessel and Airy functions. There exists a maximum stable penetration depth. Post-
buckling shapes are also integrated.

1. INTRODUCTION

The buckling of a long, hanging heavy column due to a bottom compressive load is
important in the design of drill pipes and risers in offshore oil recovery. For a concentrated
vertical bottom force, such as that expericnced by a long column lowered onto a rigid
surface, Willers (1941) found the buckling load to be 1.0188 (EN)'}p?? where EI is the
flexural rigidity and p is the mecan deansity of the column. The nonlinear postbuckling
deflections are also integrated (Wang, 1983). Other references on buckling affected by self-
weight were given by Wang (1986).

The present paper investigates a difterent situation, i.c. a long, hanging column slowly
lowered into a fluid such as water or mud. Instead of a concentrated bottom force, the
compressive load is replaced by a distributed force which may or may not cause buckling,
We assume equilibrium shear stresses are negligible in comparison to normal stresses, i.c.
steady resistive forees are mainly due to buoyancy.

2. FORMULATION

The origin of the Cartesian system (x’, y’) is placed at the bottom end of the column
(Fig. 1). Let s” be the arc length from the origin and ¢ be the local angle to the vertical. Let
p be the weight per length of the column and ¢ be the buoyancy force per length of the
dense medium. The column can be separated into two parts: the bottom part of length /
which penetrates into the fluid and the infinite top part above the fluid. Equilibrium of local
moments about an elemental length gives the governing equations for the bottom segment,
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Fig. 1. The coordinate system.
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dm+s'(c6—p)ds'sind =0, 0<s <L, {1
and for the top segment
dm+(lo—ps)dy'sind =0, I<s" < x. (2)

Assume the column is slender enough such that local moment ts proportional to local
curvature,

de
= El—. 3
m a5 (3)

Normalize all lengths with respect to / and drop primes. The governing equations become

do . L

(F:+I\s(l—/.)sm()=0. 0g<s <L, (+)
d'o o

--{;T+I\’(l-—x/.)sln()=l, 0<s €. (5)
ds*®

Here the density ratio 4 = p/a < 1. The nondimensional parameter K = o/ EN)' ' rep-
resents the relative importance of buoyuancy to flexural rigidity. The boundary conditions
are that the column is vertical at infinity and that the bottom end is moment free:

0(x) =0, (6)
do
(0) = 0. (7)
ds
Also, angles and curvatures must match at s = 1.

3. STABILITY

Equations (4) and (5) are lincarized for stability analyses:

do

ot +K%s(1=2)0 =0, 0<s<1, (8)
A

do

s +K(1=s)0=0, | <5< 7. 9)
5T

g=K(—-i)! s, (1)

Equation (8) becomes the Stokes equation :

1

)
40 0 =o, (1)
dg¢-

with the general solution in terms of Bessel functions:
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0=ciq"J_1sGe) + 29" 5G9, (12)

The constant ¢, is zero due to eqn (7). Let

rEK;.I’J<S—:!—>. (13)

Equation (9) becomes

6
dr?

—rf =0. (14)
The solutions are Airy functions A4,(r). 8,(r). Using eqn (6) we find

0 = c;A,(r). (15)

Ats = | both 8 and d8/ds for the two segments are matched :

246 2 (Ggd?) = e34.(ry), (16)
—e2qi a3 G KL= = ¢, Ai(ro) KA1, (17

where
qo=K(1-1)">0, ry=KA"-1"")<0. (18)

Since ry i negative we usce the identitics (Abramowitz and Stegun, 1965) :

A(ro) = 3/ =rolJ- 3oy + I~ 15(C0)] (19)
Ai(ro) = 2 1J_3C0) = J3Co)] (20)

wherc
(o= 3(=r)"% &0 =3g0)" @

Thus for nontrivial c,, ¢; the characteristic equation is

l 173 , ) )
(7 - ') ‘Irl)/’J:,'J(Co)[-’l/:(So)+-/- I/S(CD)]_'\/ —rod _13(§0) (/- 23(0) = J33(Ca)] = 0.

For a given 4, eqn (22) is solved numerically for the eigenvalues K. The result is shown in
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Fig. 2. Bigenvalues K as functions of 4

Fig. 2 for the first three modes. Any state below curve s stable, e, the column remains
straight when lowered into the fluid. Since the value of K increases with the immersed
length, the column becomes unstable to the first mode for states above curve 1. The
maximum K value below which the column is absolutely stable is termed critical AL Above
curve 11 the second mode also becomes unstable. Similar to the case of the Euler column,
more nodes may be unstable for lurger A

4. POSTBUCKLING SHAPES

Numerical integration of the noanlincar equations is necessary for finite postbuckling
deformations. For given K, 4 we guess 0(0) and integrate eqns (4) and (7) as an initial value
problem by the Runge-Kutta-Fehlberg algorithm. At s = | the resulting values of 8, 0, are
used as initial value for the integration of eqn (5). A solution is found if @ — 0 asymptotically
for large s. If not the value of 0(0) is adjusted and the procedure is repeated. A step size of
As = 0.05 is found to be sufficient for five digit accuracy. “Infinity™ is about s = 6.

After (s) is determined the postbuckling shapes can be integrated. Since the immersed
length [ varies for a given column, it is more convenicnt to normalize x’, y” as follows:

x=X(6/EN. v =yv(o/ED' 3 (23)
Then
dx dy
= K COs T = Ksin (], 24
ds Kcos (), ds Ksin ( (24)

Equations (24) are integrated with x(0) = »(0) = 0. Figurc 3 shows the deformations
of the first mode for 4 = 0.8. If K < 1.920 or if immersion length / < 1.92(El/g)'’ then the
column is straight. Further lowering causes the column to bend to one side. Figure 4 shows
the i = 0.5 case. Due to the denser medium, the critical value of K (=0.9055) is lower,
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Fig. 3. Postbuckling configurations for 4 = 0.8, [ mode. The length unit is (Efe)" .

Ks: 09055

Fig. 4. Postbuckling contigurations for 4 = 0.5, I mode.

signifying a much shallower penetration. The first mode has no inflection points. Figure 3
shows the higher modes for 4 = 0.5. The second mode, with one inflection point, is possible
if K > 2.724. The third mode with two inflection points may occur when K > 3.908. As in
Euler buckling, the higher modes are seldom realized in practice unless the deformations
are physically restrained.

5. DISCUSSION

As an example consider a long steel pipe lowered vertically into a soft sea bed. The
pipe. filled with oil, has an outside diameter of 0.5 m and a thickness of 0.02 m. The average
density of the pipe is 2423 kg m~’. The densities of sca water and sea bed are 1024 and
2720 kg m ~? respectively. Thus ¢ = (2720 —1024) - (cross-scctional arca) = 333 kg m !
and p =275 kg m ', yielding a ratio of 4 = 0.825. From Fig. 2 the critical value of K is
2.1. Using the dimensions we find £/ = 18.4x 10* kg m*. Thus the maximum stable
penctration depthis/ = 2.1(E//g)' * = 80 m. Large deformations may occur for immersion
lengths greater than 80 m. Figure 3 shows the high sensitivity for K slightly larger than its
critical value. Even though a column is initially driven straight into a dense medium, if the
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+

Fig. . Postbuckling contigurations tor 2 = 0.5, right curves [ mode, left curve HT mode.

value of K is above critical, the column (after slowly avercoming shear resistunce) would
eventually become curved in shape.

As 4 approaches zero, Fig. 2 shows the critical value of A also approaches zero, i.c.
no penctration can oceur without bending. Under these conditions the normalizations in
this paper, using /, become invalid. The dense medium, however, does not approach a solid
sinee it cannot sustain concentrated forees. One is referred to Wang (1983) for the case ol
lowering a long, hanging column onto an impenctrable solid surface,
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