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Abstract-A long. hanging column is lowered into a fluid. Depending on the immersion length.
densities and fleltural rigidity. the column mayor may not buckle. The stability criteria are found
in terms of Bessel and Airy functions. There eltists a maltimum stable penetration depth. Post­
buckling shapes are also integrated.

I. INTRODUCTION

The buckling of a long, hanging heavy column due to a bottom compressive load is
important in the design of drill pipes and risers in offshore oil recovery. For a concentrated
vertical bottom force. such as that experienced by a long column lowered onto a rigid
surface, Willers (1941) found the buckling load to be 1.0188 (El)I/JpUJ where El is the
llexural rigidity and p is the mean density of the column. The nonlinear postbuckling
dellections arc also integrated (Wang, 1983). Other references on buckling affected by self­
wcight were given by W.lIlg (1986).

The present paper investigates a dillcrent situation, i.e. a long, hanging column slowly
lowered into a fluid such as water or mud. Instead of a concentrated bottom force, the
compressive load is replaced by a distributed force which mayor may not cause buckling.
We .tssume equilibrium shear stresses arc negligible in comparison to normal stresses, i.e.
steady resistive forces arc mainly due to buoyancy.

2. FORMULATION

The origin of the Cartesian system (x'. y') is placed at the bottom end of the column
(Fig. I). Let s' be the arc length from the origin and 0 be the local angle to the vertical. Let
p be the weight per length of the column and (f be the buoyancy force per length of the
dense medium. The column can be separated into two parts: the bottom part of length I
which penetrates into the fluid and the infinite top part above the fluid. Equilibrium of local
moments about an elemental length gives the governing equations for the bottom segment,
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Fig. I. The coordinate system.
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and for the top segment
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dm+s'(a-p) ds' sin tJ = O. 0 ~ .1" ~ I.

dm+ (la-ps') d.\' sin tJ = O. I ~ .1" < x.

(I)

(2)

Assume the column is slender enough such that local moment is proportional to local
curvature.

dO
m = E/-­ds' . (3)

Normalize all lengths with respect to I and drop primes. The governing equations become

(4)

(5)

Here the density ratio A:; plrr < I. The nonJimensional parameter l\:; I(rr! El) 1 1 rep­
resents the relative importance of buoyancy to llexural rigidity. The boundary conditions
are that the column is vertical at inlinity and that the bottom end is moment free:

dO
(0) = O.

ds

Also. angles and curvatures lllust match at .I' = I.

3. STABILITY

Equations (4) and (5) are linearized for stability analyscs:

Let

Equation (8) becomcs the Stokes equation:

d"O
, +qO = O.

dt!"

with the gencral solution in tcrms of Bcssel functions:

(7)

(8)

( I (»)

( I I )
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() = C Iq 1;1J _1/3(jqJ 2) + C2q1i2J 1/3(jqJI2).

The constant ('2 is zero due to eqn (7). Let

Equation (9) becomes

The solutions are Airy functions A,(r). 8,(r). Using eqn (6) we find

At s = I both 0 and dO/ds for thc two scgmcnts arc matchcd:

where

Since ru is negative we use the identities (Abrnmowitz and Stegun. 1965):

where

Thus for nontrivial C2' CJ the ch<lracteristic equation is
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(12)

(13)

(14)

( 15)

( 16)

( 17)

(18)

(19)

(20)

(21 )

(22)

For a given )., eqn (22) is solved numerically for the eigenvalues K. The result is shown in
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Fig. 2. Eigenvalues K. as fUlIcltolls of J..

Fig. 2 for the first three modes. Any stale bdow curve I is stable, i.e. the column remains
straight when lowered into the l1uid. Since the value of K increases with the immersed
length, the column becomes unstable to the first mode for states above curve L The
maximum K value below which the column is absolutely stable is termed critical K. Above
curve II the second mode also becomes unstable. Similar to the case of the Eulcr column.
more nodes may be unstable for larger K.

4. POSTlHJCKLING SIlAPES

Numerical integration of the nonlinear equations is necessary for tinite postbuckling
deformations. For givcn K, ). we gucss 0(0) and integrate eqns (4) and (7) as an initial value
problem by the Runge-Kutta-Fehlberg algorithm. At s = I the resulting values of 0,0, are
used as initial value for the integration ofeqn (5). A solution is found if {) -+ 0 asymptotically
for large s. If not the value of 0(0) is adjusted and the procedure is repeated. A step size of
.6.s = 0.05 is found to be sufficient for five digit accuracy. "Infinity" is about s = 6.

After O(s) is determined the postbuckling shapes can be integrated. Since the immersed
length I varies for a given column, it is more convenient to normalize x' • .1" as follows:

Then

x = x'(afE!)!>, y = y'(aiEI)!>. (23)

dv. = K cos 0,
ds

dl'

d
· = K sin O.
s

(24)

Equations (24) arc integrated with x(O) = yeO) = O. Figure 3 shows the deformations
of the first mode for A. = 0.8. If K < 1.920 or if immersion length I < 1.92(EI(a) lJ then the
column is straight. Further lowering causes the column to bend to one side. Figure 4 shows
the A. = 0.5 case. Due to the denser medium, the critical value of K (=0.9055) is lower.
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Fig. 3. Post buckling configurations for A. = 0.8. [ mode. The length unit is (£1:(1) ".

Fig. 4. Postbuckling configurations for A = 0.5. I mode.

signifying a much shallower penetration. The first mode has no inflection points. Figure 5
shows the higher modes for ;. = 0.5. The second mode, with one inflection point, is possible
if K > 2.724. The third mode with two inflection points may occur when K> 3.908. As in
Euler buckling. the higher modes arc seldom realized in practice unless the deformations
arc physically restrained.

5. DISCUSSION

As an example consider a long steel pipe lowered vertically into a soft sea bed. The
pipe. filled with oil. has an outside diameter of0.5 m and a thickness of 0.02 m. The average
density of the pipe is 2423 kg m~· J. The densities of sea water and sea bed arc 1024 and
2720 kg m -J respectively. Thus (1 = (2720-1024) . (cross-sectional area) = 333 kg m 1

and p = 275 kg m - I. yielding a ratio of ;. = 0.825. From Fig. 2 the critical value of K is
2.1. Using the dimensions we find EI= 18.4x 10' kg m~. Thus the maximum stable
penetration depth is 1= 2.1 (EI/(1) I) = 80 m. Large deformations may occur for immersion
lengths greater than 80 m. Figure 3 shows the high sensitivity for K slightly larger than its
critical value. Even though a column is initially driven straight into a dense medium, if the
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hr:. 5. I'oslhllcklin~ conti~lIralions for i. n.5. ri~hl ClIrves Il1l1ode. len nine 1I11l1ode.

valul: or A: is ahovl: nitical. thl: column (artl:r slowly oVl:rcoming shcar rl:sistaIKl:) would
cventually hl:l:oml: curvl:d in sharl:.

As J. aprroadll:s n:l'O, Fig. 2 shows Ihc critical valuc or A' also approaches zero, i.e.
no pcnl:lration can occur without hcnding. Under these conditions the normalizations in
this paper, using I, hecome invalid. The dl:nse mediulll, however, docs not arproach a solid
since it Glnllllt sustain concentratl:d forces. Onl: is rd'erred to Wang (I()X3) ror thl: caSl: or
lowering a long, hanging colullln onto an impcnctrablc solid surfacl:.
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